Interaction between the exchanged Mn2+ and Yb3+ ions confined in zeolite-Y and their luminescence behaviours
نویسندگان
چکیده
Luminescent zeolites exchanged with two distinct and interacted emissive ions are vital but less-studied for the potential applications in white light emitting diodes, solar cells, optical codes, biomedicine and so on. Typical transition metal ion Mn2+ and lanthanide ion Yb3+ are adopted as a case study via their characteristic transitions and the interaction between them. The option is considered with that the former with d-d transition has a large gap between the first excited state 4T1 and the ground state 6A1 (normally >17,000 cm-1) while the latter with f-f transition has no metastable excited state above 10,000 cm-1, which requires the vicinity of these two ions for energy transfer. The results of various characterizations, including BET measurement, photoluminescence spectroscopy, solid-state NMR, and X-ray absorption spectroscopy, etc., show that Yb3+ would preferably enter into the zeolite-Y pores and introduction of Mn2+ would cause aggregation of each other. Herein, cation-cation repulsion may play a significant role for the high valence of Mn2+ and Yb3+ when exchanging the original cations with +1 valence. Energy transfer phenomena between Mn2+ and Yb3+ occur only at elevated contents in the confined pores of zeolite. The research would benefit the design of zeolite composite opto-functional materials.
منابع مشابه
Nanostructured Ag-zeolite Composites as Luminescence-based Humidity Sensors
Small silver clusters confined inside zeolite matrices have recently emerged as a novel type of highly luminescent materials. Their emission has high external quantum efficiencies (EQE) and spans the whole visible spectrum. It has been recently reported that the UV excited luminescence of partially Li-exchanged sodium Linde type A zeolites [LTA(Na)] containing luminescent silver clusters can be...
متن کاملPreparation and Application of MnO2 Nanoparticles/Zeolite AgY Composite Catalyst by Confined Space Synthesis (CSS) Method for the Desulfurization and Elimination of SP and OPP
In this work, zeolite NaY was prepared by hydrothermal method. Then, silver ions were replaced in the zeolite NaY with silver nitrate (AgNO3) solution via using ion exchange (IE) method. The Manganese dioxide (MnO2) nanoparticles (9.3 and 15.8 wt %) for guest were deposited in the zeolite AgY(host) structure with Mn(NO3)2 aqueous and KMnO4 solutions by confined space synthesis (CSS) metho...
متن کاملElimination of Cd2+ and Mn2+ from Wastewaters Using Natural Clinoptilolite and Synthetic Zeolite P
This study deals with the uptake of Cd2+ and Mn2+ ions from contaminated water using two Iranian natural clinoptilolite-rich tuffs from Meyaneh (Z-m), and Semnan (Z-s) regions , and a synthetic zeolite-P from Z-m sample (Z-P) under static (batch operation) and dynamic (column operation) conditions. To investigate the selectivity of the zeolites towar...
متن کاملEffect of Eu3+ codoping on upconversion luminescence in Y2O3:Er, Yb3+ nanocrystals
The influence of Eu3+ on the upconversion (UC) fluorescence of Er3+ in Y2O3:Er, Yb3+ nanocrystals was investigated. Room-temperature UC spectra show that the intensity ratio of red to green lights was increased from 8.6 to 19.3 with 1.0 mol% Eu3+ doping. Additionally, with the increase of Eu3+ ion concentration, the n values for both green and red UC emissions in Y2O3:Er, Yb3+ nanocrystals beco...
متن کاملTailored Near‐Infrared Photoemission in Fluoride Perovskites through Activator Aggregation and Super‐Exchange between Divalent Manganese Ions
Biomedical imaging and labeling through luminescence microscopy requires materials that are active in the near-infrared spectral range, i.e., within the transparency window of biological tissue. For this purpose, tailoring of Mn2+-Mn2+ activator aggregation is demonstrated within the ABF3 fluoride perovskites. Such tailoring promotes distinct near-infrared photoluminescence through antiferromag...
متن کامل